-FCI-InGaAs-XXX-LCER

High Speed InGaAs Photodiodes Mounted on Ceramic Packages w/Leads

FCI-InGaAs-XXX-LCER with active area sizes of $70 \mu \mathrm{~m}, 120 \mu \mathrm{~m}, 300 \mu \mathrm{~m}$, $400 \mu \mathrm{~m}$ and $500 \mu \mathrm{~m}$ are part of OSI Optoelectronics's high speed IR sensitive photodiodes mounted on gull wing ceramic substrates. The chips can be epoxy/eutectic mounted onto the ceramic substrate.

Notes:

- All units in millimeters.
- All devices are mounted with low out gassing conductive epoxy with tolerance of $\pm 25 \mu \mathrm{~m}$. Eutectic mounting is also available upon request.

- APPLICATIONS
- High Speed Optical

Communications

- Gigabit Ethernet/Fibre Channel
- SONET / SDH, ATM
- Diode Laser Monitoring
- Instrumentation
- Low Noise
- High Responsivity
- High Speed
- Spectral Range 900nm to 1700nm

Absolute Maximum Ratings

PARAMETERS	SYMBOL	MIN	MAX	UNITS
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40	+85	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\text {op }}$	0	+70	${ }^{\circ} \mathrm{C}$
Soldering Temperature	$\mathrm{T}_{\text {sld }}$	---	+260	${ }^{\circ} \mathrm{C}$

Electro-Optical Characteristics

$\mathrm{T}_{\mathrm{A}}=23^{\circ} \mathrm{C}$

PARAMETERS	SYMBOL	CONDITIONS	FCI-InGaAs-70LCER			FCI-InGaAs-120LCER			FCI-InGaAs-300LCER			FCI-InGaAs-400LCER			FCI-InGaAs-500LCER			UNITS
			MIN	TYP	MAX													
Active Area Diameter	$\mathrm{AA}_{\text {¢ }}$	--	---	70	---	---	120	---	---	300	---	---	400	---	---	500	---	$\mu \mathrm{m}$
Responsivity	R_{λ}	$\lambda=1310 \mathrm{~nm}$	0.80	0.90	---	0.80	0.90	---	0.80	0.90	---	0.80	0.90	---	0.80	0.90	---	A/W
		$\lambda=1550 \mathrm{~nm}$	0.90	0.95	---	0.90	0.95	---	0.90	0.95	---	0.90	0.95	---	0.90	0.95	--	
Capacitance	C_{j}	$\mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}$	---	0.65	---	---	1.0	---	---	10.0	---	---	14.0	---	---	20.0	---	pF
Dark Current	I_{d}	$\mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}$	---	0.03	2	---	0.05	2	---	0.30	5	---	0.40	5	---	0.50	20	nA
Rise Time/ Fall Time	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	$\begin{gathered} \mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega \\ 10 \% \text { to } 90 \% \\ \hline \end{gathered}$	---	---	0.20	---	---	0.30	---	---	1.5	---	---	3.0	---	---	10.0	ns
Max. Revervse Voltage	---	---	---	---	20	---	---	20	---	---	15	---	---	15	---	---	15	V
Max. Reverse Current	---	---	---	---	1	---	---	2	---	---	2	---	---	2	---	---	2	mA
Max. Forward Current	---	---	---	---	5	---	--	5	---	---	8	---	---	8	---	---	8	mA
NEP	---	---	---	$\begin{array}{\|c\|} \hline 3.44 \mathrm{E}- \\ 15 \\ \hline \end{array}$	---	---	$\begin{array}{\|c} \hline 4.50 \mathrm{E}- \\ 15 \\ \hline \end{array}$	---	---	$\begin{array}{\|c\|} \hline 6.28 \mathrm{E}- \\ 15 \\ \hline \end{array}$	---	---	$\begin{array}{\|c} \hline 7.69 \mathrm{E}- \\ 15 \\ \hline \end{array}$	---	---	$\begin{array}{\|c} \hline 8.42 \mathrm{E}- \\ 15 \\ \hline \end{array}$	---	W/VHz

